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LETTERS

Activation energy for superplastic flow in Ti-3Al-2.5V alloy

A. SALAM*, C. HAMMOND

Institute for Materials Research, University of Leeds, Leeds, UK

In a previous letter [1], flow stress strain rate behavior
of a two phase titanum alloy Ti-3Al1-2.5V was studied
in the temperature range 750 to 910 °C. The method
of cross-head speed cycling was used and data were
expressed graphically as In ¢ vs. In € plots. The present
work is the continuation of this study and is aimed at

the derivatoin of activation energy data for Ti-3Al-2.5V
from its flow stress-strain rate behavior in order to
find the rate controlling mechanism during superplastic
deformation.

The flow behavior of a material during a high tem-
perature deformation test is generally given by the

T 70¢C
800 C
830 C
850 C
8680 C
910 C

» N & vN@OC—

x10'
3

FLOW STRESS (MPA)

x10°

3 4 56789
x10¢

1 2

2

3 4 S467891 2 3 4 Se67891
x10™ x10*

0.9

.85+

::]

0.80 +
075+

0704

+

Q.65+

0,60 +

0.55 +

DO#’

0.50 +

P ose

0.45 4+

0.40 +

STRAIN RATE SENSITIVITY

0.3 4

x4

0. 20

DNQ
DO*Q
P oye

1 2 3 4 567891
x10%

2 3 4 56707 2 3
-4

4 S67891
10’ x1o®

STRAIN RATE (1/SEC)

Figure 1 Ino vs.In € and m vs. In € plots for Ti-3Al-2.5V. For each test, only the increasing strain rate part of first cycle is plotted.
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Figure 2 An example of Arrhenius type plot used to calculate the activation energy values for Ti-3Al-2.5V by constant strain rate method.

following relationship.
EKTLP/Gb = Alo/G1"Dyexp(—Q/RT) (1)

in which the strain rate € is related to flow stress o by
stress sensitivity index n and process activation energy
Q,where G, b, L, R and D, have their usual meanings.

From Equation 1 the following relationships can be
derived.

Q- = RI{3In(a"/TG""H}/(1/ T)}] 2)
6358

at constant strain rate and

Qo = —R{d IMETG"~H}/(1/T)}] 3

at constant stress.

Using Equations 2 and 3 activation energy values
were calculated from the slopes of the In (o /TG"™!)
vs. 1/T and In €TG"™ ') vs. 1/T curves at constant
strain rates and at a constant stress level. Data from the
first increasing strain rate cycles were strain indepen-
dent (Fig. 1) and therefore were considered appropriate
to determine the effect of temperature on the In o vs. In



TABLE 1 Shear modulus (G) values

Temperature (°C) 750 800 830 850 880 910
Shear modulus (MPa) 2.66 x 10* 2.54 x 10* 2.47 x 10* 2.42 x 10* 2.35 x 10* 2.28 x 10*
TABLE II Stress sensitivity index () region III and 223 and 260 KJ/mole for region II in the

. . temperature range 850 to 925 °C. Mare recently Salam
Strain rate/stress Region n e

and Hammond [4] reported activation energy values of

§=2x10"3s"! i 255 232 and 225 KJ/mole for region Il and 221 KJ/mole for
£=4x 10*‘: S*i 1 211 region III for a two phase titanium alloy Ti-3 Al-4V.
£=T7x107s 1 175 Both the activation energy values obtained in this work
o = 30 MPa - 2.19

€ plots. Shear modulus (G) values used in the calcula-
tions were taken from previous work [2] and are given
in Table I. Stress sensitivity index (n) values were de-
termined for the alloy from its flow stress-strain rate
behavior and are given in Table II at three different
strain rates corresponding to regions III and II and I
stress level.

Atconstant strain rates, activation energy values were
calculated to be 247, 232 and 233 KJ/mole for region
IT (Fig. 2). At a constant stress level, activation en-
ergy was found to be 212 KJ/mole, which is somewhat
lower than that at constant strain rates. As from In o
vs. In € data, there appears to be no clear distinction
between regions II and III, the values calculated here
are considered representative of region II only. How-
ever, most importantly, all these activation energies are
higher than the proposed values for lattice self diffusion
i.e., 129 KJ/mole and significantly higher than that for
grain boundary diffusion. On comparison with previ-
ous work on the same alloy, the data appear to be in
approximate agreement with the results of Cope [3]
who reported a Q value of 202 KJ/mole for region II in
the temperature range 750 to 940 °C, and Arieli et al.
[2] who reported values of 247 and 228 KJ/mole for

for region II (i.e., 247 and 232 KJ/mole) are suggestive
of a rate controlling mechanism such as that for lattice
diffusion in the 8 in contrast to most superplastic al-
loys, other than two phase titanium alloys, in which the
rate controlling mechanism has been found to be that
of grain boundary diffusion [5].

Itis concluded that the activation energy value for su-
perplastic deformation of Ti-3 Al-2.5V in region Il may
be taken to be approximately 232 KJ/mole. This sug-
gests that the rate controlling mechanism during super-
plastic deformation of the alloy is lattice self-diffusion
in B phase rather than grain boundary diffusion.
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